Composite Fermions and Integer Partitions
نویسندگان
چکیده
We utilize the KOH theorem to prove the unimodality of integer partitions with at most a parts, all parts less than or equal to b, that are required to contain either repeated or consecutive parts. We connect this result to an open question in quantum physics relating the number of distinct total angular momentum multiplets of a system of N fermions, each with angular momentum L, to those of a system in which each Fermion has angular momentum d* = d N + 1. 0 zoo1 ~cadnnic ~ r r a
منابع مشابه
Stirling number of the fourth kind and lucky partitions of a finite set
The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.
متن کاملFractional quantum Hall effect and Wigner crystal of interacting composite fermions.
In two-dimensional electron systems confined to GaAs quantum wells, as a function of either tilting the sample in a magnetic field or increasing density, we observe multiple spin-polarization transitions of the fractional quantum Hall states at filling factors ν=4/5 and 5/7. The number of observed transitions provides evidence that these are fractional quantum Hall states of interacting two-flu...
متن کاملInterlayer coherent composite Fermi liquid phase in quantum Hall bilayers.
We introduce an interlayer coherent composite Fermi liquid for nu = 1/2 + 1/2 bilayers, in which interlayer Coulomb repulsion drives exciton condensation of composite fermions. As a result, composite fermions propagate coherently between layers--even though electrons do not--and form bonding and antibonding Fermi seas. This phase is compressible with respect to symmetric currents but quantum Ha...
متن کاملOn Free Fermions and Plane Partitions
We use free fermion methods to re-derive a result of Okounkov and Reshetikhin relating charged fermions to random plane partitions, and to extend it to relate neutral fermions to strict plane partitions.
متن کاملDynamic nuclear polarization in the fractional quantum Hall regime.
We investigate dynamic nuclear polarization in quantum point contacts (QPCs) in the integer and fractional quantum Hall regimes. Following the application of a dc bias, fractional plateaus in the QPC shift symmetrically about half filling of the lowest Landau level, ν=1/2, suggesting an interpretation in terms of composite fermions. Polarizing and detecting at different filling factors indicate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 95 شماره
صفحات -
تاریخ انتشار 2001